
Regression Testing Using Coupling and Genetic
Algorithms
Harsh Bhasin#, Manoj*

#Computergrad.com
Faridabad, Haryana India

*MRKIET
 Reweri, Haryana

Abstract— Regression testing calls for the execution of all
the test cases tested before a change is made in the
software. It takes a lot of time and resources and hence a
technique is needed to prioritize the test cases so that only
important test cases are re-executed thus saving the time
and still not compromising with the quality of the
software. The proposed technique prioritizes original test
suite by assigning fitness value to each of the test cases and
then applying Genetic Algorithms so that the new suite
will have a superior rate of fault detection when compared
to the rates of randomly prioritized test suites. To assign
the fitness value, various modules have been given a value
based on the system proposed. The fitness value is judged
on the basis of coupling. If a module has an undesirable
coupling, it is liable to be a source of errors, so it is given a
smaller value whereas that having not so undesirable
coupling will have greater value.

Keywords- Regression Testing, Test case prioritization,
Genetic Algorithms, Coupling.

I. INTRODUCTION

The purpose of regression testing is to ensure that bug
and new functionality introduced in a new version of
software do not adversely affect the correct
functionality inherited from the previous version [1].
There are insufficient resources to allow for the re-
execution of all test cases during regression testing. So,
test case prioritization techniques are to be used to
improve the effectiveness of regression testing by
ordering the test cases in such a way so that those
having high fitness value are executed first. In this work
a new test case prioritization technique using Genetic
Algorithms (GAs) has been proposed. The proposed
technique prioritizes subsequence of the original test
suite so that the new suite, which is run, will have a
superior rate of fault detection when compared to rates
of randomly prioritized test suites. The various modules
have been given a value based on the system proposed.
The vale is then converted into a float number between
0 and 1. The value is judged on the basis of coupling
and cohesion. The module, if has an undesirable
coupling is liable to be a source of errors, so it is given
a smaller value whereas that having not so undesirable
coupling will have more value. To keep the things
simple the factors which are to be multiplied are in
powers of 10. Another concept has been incorporated
here is the concept of call graph. A program’s call
graph is an essential underlying structure for
performing the various interprocedural analyses used in

software development tools for object-oriented software
systems [2]. The call graph shows the calling
relationships between methods during the execution of
the application, and is focused on a method of choice. If
a given method is called in several contexts, it is shown
once for each context in the call graph. The base
method is shown only once in the call graph, unless it is
called recursively. So the module which is altered needs
to be checked first followed by the modules which call
that particular module, a value based on this has been
proposed. The above two values first being the coupling
and cohesion factor and the second being the call graph
based value are clubbed together with the help of
formula proposed. This forms the basis of the fitness
value which is scaled down to a number between 0 and
1. The different modules in the software will now have
different fitness values. The module having high fitness
value needs to be checked first followed by that having
low fitness value. The modules will now be prioritized
based on these values. The problem of prioritizing the
modules is converted into a simple knapsack problem
which is most apt for applying GAs. The GAs then
finds out the most suitable modules according to the
fitness function. A test case has been taken as an
experiment to analyse the GAs with regard to
effectiveness. The GAs based method will perform
crossover, mutation, replication and rollet wheel
selection to find out the most important modules that
needs to be checked. The above method will be time
bound and hence more effective as compared to the
existing methods. Moreover the changes if made in one
module will affect other modules in what way can be
judged by the values of the modules obtained.

II. LITERATURE REVIEW

Regression testing is verifying that previously
functioning software remains same after a change. With
the goal of finding a basis for further research a
systematic review of empirical evaluations of regression
test selection techniques was conducted. A study in
which out of 29 23 papers analysed, 28 papers were
identified reporting on empirical comparative
evaluations of regression test selection techniques. They
report on 38 unique studies, and in total 32 different
techniques for regression test selection has been
evaluated. Our study concludes that no clear picture of
the evaluated techniques can be provided based on
existing empirical evidence, except for a small group of

Harch Bhasin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3255 - 3259

3255

related techniques. Instead, the need for more and better
empirical studies was identified and concepts were
evaluated [3]. The empirical studies were observed
where concepts are evaluated rather than small
variations in technical implementations.

A. Regression Test Selection Techniques

A variety of regression test selection techniques have
been described in the research literature. A survey by
Rothermel and Harrold describes several families of
techniques [4]. Here the families and approaches of
each have been described, and a representative example
has been provided of each of the technique.

1) Minimization Techniques

Minimization-based regression test selection techniques,
attempt to select minimal sets of test cases from T that
yield coverage of modified or affected portions of P
[5].For example, the technique of Fischer et al uses
systems of linear equations to express relationships
between test cases and basic blocks. The technique uses
a 0-1 integer programming algorithm to identify a
subset T’of T that ensures that every segment that is
statically reachable from a modified segment is
exercised by at least one test case in T that also
exercises the modified segment.

2) Dataflow Techniques

Dataflow-coverage-based regression test selection
techniques select test cases that exercise data
interactions that have been affected by modifications.
For example, the technique of Harrold and Soffa
requires that every definition-use pair that is deleted
from P, new in P, or modified for P’ be tested. The
technique selects every test case in T that, when
executed on P, exercised deleted or modified definition-
use pairs, or executed a statement containing a modified
predicate [5].

3) Safe Techniques

Most regression test selection techniques—
Minimization and dataflow techniques among them—
are not designed to be safe. Techniques that are not safe
can fail to select a test case that would have revealed a
fault in the modified program. In contrast, when an
explicit set of safety conditions can be satisfied, safe
regression test selection techniques guarantee that the
selected subset, T’, contains all test cases in the original
test suite T that can reveal faults in P’. Several safe
regression test selection techniques have been proposed.
The theory behind safe test selection and the set of
conditions required for safety have been detailed in
Rothermel and Harrold. For example, the technique of
Rothermel and Harrold uses control-flow-graph
representations of P and P’, and test execution profiles
gathered on P, to select every test case in T that, when
executed on P, exercised at least one statement that has
been deleted from P, or that, when executed on P’, will
exercise at least one statement that is new or modified
in P’.

4) Ad Hoc/Random Techniques

When time constraints prohibit the use of a retest-all
approach, but no test selection tool is available,
developers often select test cases based on “hunches,”
or loose associations of test cases with functionality.
Another simple approach is to randomly select a
predetermined number of test cases from T.

5) Retest-All Technique

The retest-all technique simply reuses all existing test
cases. It effectively “selects” all test cases in the suit.

B. Previous Work

Unless test selection, program execution with the
selected test cases, and validation of the results take less
time than rerunning all test cases, test selection will be
impractical. Therefore, cost-effectiveness is one of the
first questions researchers in this area have studied.
Rosenblum and Weyuker and Rothermel and Harrold
have conducted empirical studies to investigate whether
certain regression test selection techniques are cost-
effective relative to retest-all. Rosenblum and Weyuker
applied their regression test selection algorithm,
implemented in a tool called TestTube, to 31 versions
of the KornShell and its associated test suites. For 80%
of the versions, their algorithm required 100% of the
test cases. The authors note, however, that the test suite
for KornShell contained a relatively small number of
test cases, many of which caused all components of the
system to be exercised.

In contrast, Rothermel and Harrold [4] applied their
regression test selection algorithm, implemented in a
tool called DejaVu, to a variety of programs. For a set
of 100–500 line programs DejaVu was able to discard
an average of 45% of the test cases, while for a larger
software system (50,000 lines) it was able to discard an
average of 95%. Thus, although our understanding of
the issue is incomplete, there is some evidence to
suggest that test selection can provide savings.
Therefore, further empirical investigation of test
selection is warranted.

The only comparative study of regression test selection
techniques that is known in the literature to date was
performed by Rosenblum and Rothermel and compared
the test selection results of TestTube and DejaVu. Their
study showed that TestTube was frequently competitive
with DejaVu in terms of its ability to reduce the number
of test cases selected, but that DejaVu sometimes
substantially outperformed TestTube. The study did not
consider relative fault detection abilities, or compare
techniques other than safe techniques.

C. USE OF GENETIC ALGORITHMS IN
REGRESSION TESTING

The use of genetic Algorithms in regression testing has
been studied in the paper “Prioritizing Regression Test
Suites for Time-Constrained Execution Using a Genetic
Algorithm by Kristen Walcott, Department of
Computer Science, Allegheny College in May 2005. In
the paper it has been discussed that complete testing is
too expensive. The main aim is to detect whether new

Harch Bhasin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3255 - 3259

3256

errors have been introduced into previously tested code
and to provide confidence that modifications are correct.
By increasing the overall rate of fault detection, a
greater number of errors can be found more rapidly in
the code. This research proposes a new test case
prioritization technique using GAs. The GAs prioritizes
subsequence of the original test suite so that the new
suite, which is run within a time constrained execution
environment, will have a superior rate of fault detection
when compared to rates of naively prioritized test suites.
The experiment analyses the genetic algorithm with
regard to effectiveness and time/space overhead by
utilizing structurally-based criterion to prioritize test
cases. An Average Percentage of Faults Detected
(APFD) metric was used determine the effectiveness of
the new test case orderings.

D. COUPLING AND ITS TYPES

Coupling is the degree to which each program module
relies on each one of the other module. Low coupling
often correlates with high cohesion, and vice versa. The
software quality metrics of coupling and cohesion were
invented by Larry Constantine, an original developer of
Structured Design who was also an early proponent of
these concepts Low coupling is often a sign of a well-
structured computer system and a good design, and
when combined with high cohesion, supports the
general goals of high readability and maintainability [7].

III. GENETIC ALGORITHMS

Genetic Algorithms are adaptive heuristic search
algorithms which are based on Charles Darwin theory
of the survival of the fittest. The main idea behind these
algorithms was to replicate the randomness of the
nature. This required that the algorithm proposed should
behave like a natural system. GAs emulates the nature
to large extent. GAs produce a population in such a way
that the trait which is popular, that is, has higher fitness
value is replicated more, as is done by the nature. This
is also the fundamental concept behind evolution. So,
these algorithms are also referred as the evolutionary
algorithms [9].

A. Steps in Genetic Algorithms

A brief overview of the steps involved in GAs is as
follows.

Step 1: A population having P individuals are randomly
generated by pseudo random generators whose
individuals may represent a feasible solution. This is a
representation of solution vector in a solution space and
is called initial solution. This ensures the search to be
unbiased, as it starts from wide range of points in the
solution space.

Step 2: Individual members of the population are
evaluated to find the objective function value.

Step 3: In the third step, the objective function is
mapped into a fitness function that computes a fitness
value for each member of the population. This is
followed by the application of GA operators.

B. Genetic Algorithm Operators

1) Reproduction Operator: Reproduction is done on
the basis of Rowlett Wheel selection. It selects
chromosomes from the initial population and enters
them into the mating procedure.

2) Crossover Operator: Crossover Rate (0 to 1)
determines the probability of producing a new
chromosome form the parents. For example, the strings
10000100 to 11111111 could be crossed over after the
third locus in each to produce the two offspring
10011111 to 11100100. The crossover operator roughly
mimics biological recombination between two single-
chromosomes (haploid) organisms.

3) Mutation Operator: It randomly changes its
genetic makeup. This operator randomly flips some of
the bits in a chromosome. For example, the string
00000100 might be mutated in its second position to
yield 01000100. Mutation can occur at each bit position
in a string with some probability, usually very small
(e.g., 0.001) [8].

IV. PROPOSED WORK

Regression Testing calls for the testing of the modules
when one of the modules has been changed. This can be
done by the retest all method which is pretty expensive
and time consuming. Moreover all the tests cannot be
executed as the time factor is too important in any
project. So prioritization of the test cases is needed and
that too in a way which takes care of the type of module
and takes in to account the coupling effect as discussed
in the previous sections. Considering the above stated
reasons a technique has been presented that prioritizes
regression test suites on the bases of

1. Coupling
2. Reducing the prioritization problem into 0/1

knapsack problem and hence finding out the
most important test cases which needs to be
checked when changes are made in one of the
modules.

In summary, the work aim to implement the following;
1. Giving values to the modules on the basis of

coupling.
2. A GAs based technique to prioritize a

regression test suite.
3. The above technique helps us giving values to

the modules on the basis of coupling and also
reduce the prioritization problem into 0/1
knapsack problem so that GAs can be applied
to find out the modules to be tested. Moreover
the time required will be much less as
compared to the conventional methods of
regression testing.

C. COUPLING NUMBER CALCULATOR

Identify the type of module if it’s an undesirable
coupling then we multiply it by 0.0001 followed by
0.001,0.01,0.1 in that order. Now the module that has
low number needs to be checked first and that having a
greater number should be tested later. We call this

Harch Bhasin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3255 - 3259

3257

number cop Number: CNO. The type of coupling as
follows Interdependence between modules level names:
(from worse to better, high coupling is bad).

1) Content/Pathological coupling (Worse)
When a module uses/alters data in another module
thane it is called content coupling. Suppose we make a
variable result in C language and we intend to calculate
(a+b)/ (a-b) a and b are in the FirstModule () and c and
d are in the SecondModule () respectively. Now if we
calculate result in FirstModule() as a+b and pass its
value to int SecondModule(int result) which changes
result to result/(c+d) then the coupling will be called
Content Coupling.

2) Control Coupling

Two modules communicating with a control flag; first
tells second what to do via flag.

3) Common/Global-data Coupling
If two modules communicate via global data then such
coupling is called common coupling. For example

int i;
Void FirstMethod ()
{
i=5;

printf (“\n%d”,i);
}
Void SecondMethod ()
{
i++;
printf (“\n%d”,i);
}

Both FirstMethod and SecondMethod make use of
global data i.

4) Stamp/Data-structure Coupling
If two modules communicate via a data structure passed
as a parameter and the data structure holds more
information than the recipient needs, such a coupling is
called Stamp Coupling.

Void FirstModule ()
{
Int array [20];
// input
SecondModule (array);
}
Void SecondModule (int *arr)
{
Printf (“%d”,arr[0]);
}

The second module needed only the first element of the
array but was provided with the whole array so the
above is an example of Stamp Coupling.

5) Data Coupling

The parameters passed are only those that the recipient
needs. For example consider a Tax Calculator if
Rebate() is a method that calculates the rebate and it
passes the information to the best method by just
passing the rebate calculated, then it’s the best type of
coupling.

6) No data coupling
If two modules are independent then there exists no
coupling at all and is the best case scenario.

D. FITNESS VALUE CALCULATOR

 In the previous step the type of module was identified
if it’s an undesirable coupling then we multiply it by the
factor described earlier. Now the module that has low
number needs to be checked first and that having a
higher number should be tested later. We call it
Coupling Number: CNO. The high numbered will be
desirable and lower number coupling will not be. The
modules having lower number (MNO) will be more
important for regression testing then having higher one.
With the help of value we find out the fitness value
which is 1/ (1+efactor).

E. APPLYING GA

Now software may have thousands of modules having
the above numbers. A table having one field as the
module id and second field as the value of 1/1+efactor
is to be stored in a file. The Genetic Algorithm program
will read this file and apply the following steps to
identify the most important modules. The steps of
Genetic Algorithm that will be applied are shown in the
following flow chart. The steps have been explained in
previous section.
The algorithm for the above has been presented below
Algorithm:
Step1: find type of coupling from amongst the list

Step2: assign value to variable factor 1 according to the
table below

1. Content coupling : T1=100
2. Common coupling : T2=10
3. Control coupling: T3=1
4. Stamp coupling: T4=0.1
5. Data coupling: T5=0.01

Step 3: find the value of factor = α*factor 1 + β*factor2

Step 4: The value of factor gives us an idea of how well
the two modules are related.

Step 5: calculated fitness= 1/1+efactor

Step 6: when all modules have been given values
knapsack is applied.

The process has been summarized in the diagram given
below. The Coupling Number Calculator calculates the
coupling Coefficient. This is followed by Fitness
function calculator which calculates the fitness. The
problem then reduces to knapsack after which Genetic
Algorithms can be applied.

Harch Bhasin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3255 - 3259

3258

Fig 1: Test Case Prioritization using Genetic Algorithms

V. CONCLUSIONS
The research outlined in this work a new test case
prioritization technique using GAs has been proposed. The
proposed technique prioritizes subsequences of the original
test suite so that the new suite, which is run, will have a
superior rate of fault detection when compared to the rates of
randomly prioritized test suites. Reducing the prioritization
problem into 0/1 knapsack problem and hence finding out the
most important test cases which needs to be checked when
changes are made in one of the modules.
In future work, we prioritize the value on the basis of weight
based value. This system implements a number of different
selection, crossover, mutation, and fitness transformation

operators. The system relies on fitness function based on
coupling, although any fitness function that conforms to the
fitness interface could be used as well. In order to prioritize a
test suite, this system requires that coverage and execution
time data of a suite's test cases known beforehand and
provided in a standard plaintext format even this can be
automated.

REFERENCES
[1] Hiralal Agrawal. Joseph R. Horgan. Edward W. Krauser, J.

1993 Incremental Regression Testing. Proceeding ICSM '93
Proceedings of the Conference on Software Maintenance IEEE
Computer Society Washington, DC, USA ISBN:0-8186-4600-4

[2] Souter, A. L. and Pollock, L. L., "Incremental Call Graph
Reanalysis for Object-Oriented Software Maintenance", in
Proceedings International Conference on Software Maintenance,
2001, pp. 682 - 691.

[3] ACMIEEE international symposium on Empirical software
engineering and measurement (2008) Publisher: ACM, Pages:
22-31

[4] Gregg Rothermel, Mary Jean Harrold. Analyzing Regression
Test Selection Techniques, IEEE Transactions on Software
Engineering

[5] W. Eric Wong, J. R. Horgan, Saul London, Hira Agrawal; A
Study of Effective Regression Testing in Practice, Proceedings
of the Eighth International Symposium on Software Reliability
Engineering 1997.

[6] Dr. Arvinder Kaur and Shubhra Goyal. Article: A Genetic
Algorithm for Fault based Regression Test Case Prioritization.
International Journal of Computer Applications 32(8):30-37,
October 2011. Published by Foundation of Computer Science,
New York, USA.

[7] Parul Gandhi and Pradeep Kumar Bhatia. Article: Optimization
of Object-Oriented Design using Coupling Metrics.
International Journal of Computer Applications 27(10):41-44,
August 2011. Published by Foundation of Computer Science,
New York, USA.

[8] Harsh Bhasin, Surbhi Bhatia: Use of Genetic Algorithms for
Finding Roots of Algebraic Equations. International Journal of
Computer Science and Information Technology, 2011. Volume
2, Issue 4, pages 693-696.

[9] Harsh Bhasin, Surbhi Bhatia. Application of Genetic Algorithms
in Machine learning, 2011. IJCSIT Volume 2 Issue 5, pages :
2412-2415

Coupling Number
Calculator

Fitness Factor
Calculator

Knapsack Convertor

Genetic Algorithm
Applier

Harch Bhasin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3255 - 3259

3259

